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Abstract Launch point prediction of projectile targets is the main task of ground-
based air surveillance radars in military services. Traditionally, the radar captures the 
portion of the projectile’s trajectory to obtain time series data of position and velocity, 
and then uses an extrapolation method to determine the launch point. This work aims 
to enhance the accuracy of launch point prediction from the radar measurement data 
through the development of multiple Long-Short Term Memory (LSTM) networks. 
The proposed method consists of three stages. First, an LSTM-based filtering model 
is built to filter the noisy radar data and estimate the flight trajectory states. Second, 
an LSTM-based classifier model is created to identify the class of munitions based 
on their flight trajectories. Finally, multiple LSTM networks are developed to serve 
as the launch point predictor, in which each network is trained on different sets of 
munition classes. A switching law based on the classification result was established 
to select the best launch point predictor network for a specific class of munitions. The 
prediction results demonstrated the promising performance of the proposed method 
in launch point prediction. Furthermore, the correlation between the data distribution 
and the predictive performance of the network was explored. 

Keywords Launch Point Prediction ·Multiple Networks · Long-Short Term 
Memory 

1 Introduction 

Counter battery radars [1] play an important role in counter-fire operations. Their 
main function is to classify and forecast the launch point of hostile artillery, which 
typically includes rocket launchers, howitzers, and mortars. This facilitates the iden-
tification of the type of hostile artillery and the determination of its firing position 
through analysis of the flight trajectory of its shells. Radar is often used to capture the

W. Wiputgasemsuk (B) 
Aeronautical Engineering Division, Defence Technology Institute, Nonthaburi, Thailand 
e-mail: wisit.w@dti.or.th 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
P. Meesad et al. (eds.), Proceedings of the 19th International Conference on Computing 
and Information Technology (IC2IT 2023), Lecture Notes in Networks and Systems 679, 
https://doi.org/10.1007/978-3-031-30474-3_10 

109



110 W. Wiputgasemsuk

portion of the flight trajectory of a projectile, allowing for the acquisition of time-
history profiles of its position and velocity. Traditionally, to determine the launch 
point, the noisy radar measurement data is processed using a filtering technique to 
estimate the trajectory states of the projectile target. This information, along with a 
kinematic model of the projectile, is then used in a regression analysis to calculate 
the launch point [2–4]. 

In recent years, the advancement of neural networks has led to an increasing 
number of research studies that use this approach for the classification and launch 
point prediction of projectile targets. Carpenter et al. [5, 6] utilized the feed-forward 
neural network to identify the types of munitions, including 70 mm, 107 mm, and 
122 mm, from radar measurement data. They also used the neural network as a func-
tional representation instead of the piecewise solution from the traditional numerical 
calculation. Eckert et al. [7] employed a deep learning neural network to classify the 
variations of missiles. They built 12 distinct classes of missiles and added the simu-
lated radar noise to each simulated trajectory within each class. Their results showed 
that the deep learning neural network achieved nearly 100% classification accuracy, 
while shallow neural networks did not perform well. Kim et al. [8] used an LSTM  
network for predicting the trajectory and launch point of ballistic objects from radar 
measurement data. The LSTM model was trained using true simulated trajectories. 
They used an Unscented Kalman Filter (UKF) to reduce measurement noise, and then 
used the filtered data for testing the performance of the LSTM model. Hou and Liu 
[9] utilized an LSTM network to estimate the real position of projectile trajectories 
from noisy radar measurements and developed a Mixture Density Network (MDN) 
for trajectory extrapolation and launch point prediction. They integrated the LSTM 
and MDN into a single end-to-end network, and trained it using radar measurement 
samples and their corresponding ground truth launch points. They also compared the 
traditional Extended Kalman Filter (EKF), a vanilla LSTM, and the LSTM + MDN 
for predictive performance. 

In the literature, the use of neural network has been demonstrated to be effective 
in classifying and predicting the launch points of projectile targets. However, consid-
ering the munitions in the real world, they have various classes, each with unique 
flight trajectory characteristics. If the trajectory data for all classes were combined 
into a single training dataset, the resulting data would be highly diverse. Additionally, 
the radar measurement data is often noisy and restrictively available in practice, so 
training the network on the such dataset can lead to poor generalization performance. 
Indeed, some techniques, such as regularization, cross-validation, and early stopping 
callback, can help to improve the generalization. However, since the training data in 
this particular case is full of noise and contains outliers, more than those techniques 
might be required to achieve accuracy at an acceptable level. One such approach 
is to build separate networks for each class of munitions. By having prior knowl-
edge that the characteristics of flight trajectories between classes are quite different, 
building several networks by training each on a certain class of munitions, could 
further improve the overall predictive abilities of the networks. This idea is not new. 
It was previously studied and analyzed in the literature. Jacops et al. [10] introduced 
a supervise learning procedure using the mixtures of local experts. Their idea is that
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if we know in advance that a set of training cases may be naturally divided into 
subsets that correspond to distinct subtasks, interference can be reduced by using a 
system composed of several different “expert” networks plus a gating network that 
decides which of the experts should be used for each training case. Nguyen and Chan 
[11] presented multiple neural networks for long term time series prediction, with 
each model forecasting at a different time horizon. They showed that using multiple 
networks could yield better result than using a single network, as it could help reduce 
the propagation errors that grew during recursive prediction for long-range forecasts. 

To this end, this paper proposes the method of utilizing multiple LSTM networks 
to enhance the accuracy of launch point prediction. The launch point predictor model 
consists of multiple LSTM networks which are trained on different sets of trajectory 
data. The LSTM-based classifier is built to identify the class of munition from its 
flight trajectories. The switching law based on the classification result is established 
to select the best launch point predictor network for each class of munitions. The 
main contributions of this paper are:

• Introducing the use of multiple LSTM networks to forecast the launch points of 
projectile targets from noisy radar measurement data, and

• Using multiple LSTM networks plus a switching law can improve the accuracy 
of launch point predictions compared to using a single LSTM network. 

2 Methodology 

2.1 Proposed Method 

The basis of the proposed method is to make full use of LSTM’s ability in sequence 
pattern recognition for processing, classifying and, predicting tasks. The framework 
of the proposed methodology is illustrated in Fig. 1. The method consists of three 
parts: the filter, the classifier, and the launch point predictor.

The first part of the proposed method is the filtering model. It is used to reduce the 
measurement noise and to estimate the real trajectory states. The LSTM network has 
shown effectiveness in filtering noise errors in measurement devices. For example, 
Jiang et al. [12] used the LSTM network to reduce random noise in MEMS IMU for 
navigation applications, which outperformed the conventional autoregressive moving 
average (ARMA) model. Hou et al. [9] used the LSTM network to predict the trajec-
tory states of projectiles from noisy radar measurement data. In a similar way, this 
work uses the LSTM model to filter the noisy data in the first step. A segment of noisy 
radar data is fed into the filter model, which then outputs the estimated trajectory 
data of the same length as the input data. 

The second part of the method is the classifier model, which predicts the munition 
class based on their trajectories. The estimated trajectory data from the filter is fed 
into the LSTM network, which then estimates the possibility to which of the class
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Fig. 1 Workflow of the proposed method

that the trajectories belong. The output of the model is the most probable class of 
munitions. 

The third part is the launch point predictor model, which consists of multiple 
LSTM networks, each trained on a different set of munition classes. The predicted 
munition class is input into the switching law to select the best model for launch 
point prediction. The estimated trajectory data is then fed into the selected model, 
and the output is the predicted launch point. 

2.2 Dataset 

The radar measurement data used in this study was generated from the trajectory 
simulation program in the fire control system [13]. This program used the kinematic 
model of artillery rockets to create trajectories by varying simulation parameters such 
as launch elevation, launch azimuth, initial spin rate, air density, wind speed, wind 
direction, and others. The variation of these parameters was distributed according 
to a normal distribution with specified standard deviations. The resulting trajectory 
data included three-dimensional positions (x, y, z) at the update rate of 5 Hz (0.2 s 
per data point). 

Four different classes of artillery rockets were created by configuring differently 
in thrust and aerodynamic drag. These differences resulted in distinct down range and 
apogees. Assume that rockets were launched from nine different launch points, with 
the radar station set as the origin coordinate (0, 0). To provide a clearer illustration, 
some samples of the projectile trajectories were picked to show in Fig. 2 (left). Table 
1 summarizes the statistics of the trajectories in the training dataset. For each class 
in the dataset, there were 4,500 trajectories for training and an additional set of 900
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trajectories for both validation and testing. The training, validation and testing data 
were in the ratio of 72:14:14, respectively. This ratio was appropriate since the vali-
dation and testing data were substantial enough to evaluate the model’s performance 
on unseen data. Actually, the choice of ratio between the training and validation 
data depends on the size of dataset and the complexity of the model. Determining 
the optimal ratio for a specific problem and dataset requires an empirical process to 
minimize both the validation error and the error rate on the training set [14]. 

In general, a radar system can maintain tracking of a targets as long as the charac-
teristics of the target and the operational environment are within the capabilities of 
the radar system. However, there are various factors that may cause a radar system 
to lose tracking such as target being out of range, target moving at high speeds, or 
the presence of interference like jamming. To represent the partially available radar 
data, the entire trajectory was segmented into multiple windows. By having longer 
window lengths, the accuracy of launch point prediction has the potential to increase. 
Assuming that the radar could track a target for 10 s during the time interval from 
25 to 37 s after launch, and with the update rate of 5 Hz, the resulting window had 
a length of 50 time steps, starting from time step 125 and ending at time step 185. 
Shifting the window by one time step resulted in 11 overlapping windows for each 
trajectory. To make the data more realistic, additive white Gaussian noise with a

Fig. 2 (left) Projectile trajectories and (right) portions of noisy radar data 

Table 1 Flight Statistics of 4 classes of rocket (A, B, C, D) 

Classes Trajectories Down Range (meters) Cross Range 
(meters) 

Apogee (meters) 

Mean Min Max Mean Min Max Mean Min Max 

A 4500 18,662 17,345 19,532 −18 −1909 1805 6512 3733 9453 

B 4500 10,729 9910 11,131 6 −784 819 3379 1917 4794 

C 4500 41,290 31,584 50,587 −21 −4344 3968 13,668 7082 22,255 

D 4500 33,301 28,193 39,725 17 −3188 3687 11,476 6378 18,195 
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standard deviation of 10 m for each axis was applied to data points. Some examples 
of incomplete and noisy radar data are shown in Fig. 2 (right). 

2.3 LSTM Networks and Training 

All networks were implemented using the TensorFlow framework on a Windows10 
system equipped with an Intel Xeon E3-1505 M 2.8 GHz CPU and 32 GB of RAM. 
Before training, the datasets were standardized using the StandardScaler function 
provided by Scikit-Learn. In the training process, the number of layers and neurons 
were tuned by random search and adjusted manually around the best value found by 
random search. At each time, the early stopping callback was used to avoid overfitting 
and to restore the best weights. The training process and hyperparameters for each 
network are as follows: 

Filter: The network consisted of four layers, with the first being a flatten layer of 
150 neurons (representing 50 time steps × 3 input features). The hidden layers were 
two LSTM layers with 28 and 20 neurons, respectively. The output layer was a dense 
layer with 150 neurons, matching the number of neurons in the first layer. In the 
training phase, the input sequence was the noisy trajectory data (x, y, z) with a length 
of 50 time steps, and the target was the true trajectory data with the same length as 
the input sequence. The Adam optimizer was used, with a batch size of 50 and the 
mean square error (MSE) as the loss function. 

Classifier: The network consisted of four layers, starting with a flatten layer with 
150 neurons. The second layer was an LSTM layer with 4 neurons, followed by 
a dense layer with 4 ReLU activation functions. The final layer had 4 cells with 
a softmax activation function to output the class probabilities. The output of the 
network was the class label with the highest probability. During training, the Adam 
optimizer was used, with a batch size of 100 and categorical cross entropy as the loss 
function. Accuracy was used as the evaluation metric. 

Launch Point Predictor: To find the best launch point predictor for each class of 
munition, seven alternative LSTM networks were developed and trained on a different 
dataset, as outlined in Table 2. All alternative networks had the same architecture but 
differed in the number of neurons in the hidden LSTM layers. The first layer was a 
flatten layer with 150 neurons, followed by three LSTM layers with varying numbers 
of neurons, as listed in the third column of Table 2. The final layer was a dense layer 
with 2 neurons corresponding to the target (x, y). In the training phase, the Adam 
optimizer was used, with a batch size of 50 and the MSE as the loss function. The 
input sequence for training was the true trajectory data over 50 time steps, and the 
target was the corresponding actual launch points (x, y). The MSE losses for training 
and validation were listed in the last two columns of Table 2. We can observe that 
the MSE value for validation was slightly lower than the value for training. This was



Projectile Launch Point Prediction via Multiple LSTM Networks 115

Table 2 The network architecture and the MSE for training/validation 

Networks Datasets Neurons MSE 

Training Validation 

1 A 22,20,16 14.67e-6 13.08e-6 

2 B 20,18,14 12.61e-6 5.46e-6 

3 C 20,18,14 13.84e-6 8.68e-6 

4 D 20,18,14 6.29e-6 2.19e-6 

5 A + B 22,20,16 20.46e-6 4.53e-6 

6 C + D 22,20,16 31.66e-6 5.30e-6 

7 A + B + C + D 22,20,16 9.95e-6 2.18e-6 

due to the early stop callback that stopped the training process when the validation 
error reached its minimum and started to increase. 

3 Experimental Results 

To evaluate the effectiveness of the proposed method, a new set of 3,600 trajectories 
(900 trajectories per class) with added white Gaussian noise was generated to serve 
as the testing dataset. The same preprocessing steps were applied once for the testing 
dataset, which involved standardizing the data and dividing it into a window with 
a length of 50 time steps. The testing process started with feeding the segment of 
noisy data into the filter model, which then output the estimated trajectory. The root 
mean squared error (RMSE) was used as a metric to evaluate the deviation between 
the estimated and actual trajectories. The result showed the RMSE of 4.3 m across 
the entire testing dataset, as illustrated in Fig. 3, which showed the close proximity 
between the estimated and actual trajectories.

The estimated trajectories were then input into the classifier model. The result 
of the classification accuracy was found to be 100%, despite the network having a 
simple structure with few neurons. This was likely due to the clear separation between 
the trajectories of each class, making it easier for the network to classify accurately. 
After that, the estimated trajectories were fed into the alternative networks, as listed 
in Table 2. Once again, the RMSE was used as a metric to evaluate the performance 
of all alternative networks in comparison. The RMSE for launch point prediction is 
defined as follows: 

RMSE =

���� 1 

2nsample 

nsample�

i=1

�
xi − xi

�2 +
�
yi − yi

�2
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Fig. 3 Comparison of the 
estimated trajectories (blue 
dot) and actual trajectories 
(red cross)

where xi, yi represent the i-th predicted launch point, and xi, yi represent the i-th 
actual launch point. 

Table 3 compares the performance of all alternative networks on the launch point 
prediction. When comparing network 7, which was trained on all combined data, 
with the individual networks 1, 2, 3, and 4, which were trained on individual datasets 
A, B, C, and D, respectively, it can be seen that all the individual networks except 
for network 3 perform better than network 7. This result is consistent with the point 
of view that the data distribution in a specific dataset correlates with the network’s 
predictive performance, regardless of how well the network is trained. Although all 
networks were comparably well-trained, network 3 which was trained on highly 
distributed C-class data performs the worst, while network 2 which was trained on 
low distributed B-class data performs much better. Combining the highly distributed 
C-class data with lower distributed data (A, B, D) could give the trained networks 
(6, 7) better performance on C-class prediction, but it worsened the prediction for 
other classes. It is clearly seen that the data distribution significantly affected the 
network’s performance. Therefore, the multiple networks in implementation were 
the combination of networks that gave the least value of RMSE in each class, as 
indicated by the green boxes in Table 3. Based on these comparison results, the 
multiple networks then consisted of network 1 for A-class prediction, network 2 
for B-class prediction, network 7 for C-class prediction, and network 4 for D-class 
prediction.

To implement a multiple-network scheme, the switching law was needed to select 
the network when receiving the predicted class from the classifier. For example, if the 
classifier predicts the B-class, the switching law will select network 2 as the launch
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Table 3 Comparisons of the predictive performance between all alternative networks in term of 
the RMSE values 

Networks Datasets RMSE 
(meters) 

RMSE (meters) 
A B C D 

1 A 42.5 42.5 - - -
2 B 13.5 - 13.5 - -
3 C 111.6 - - 111.6 -
4 D 74.4 - - - 74.4 
5 A+B 77.7 82.8 72.3 - -
6 C+D 101.1 - - 96.0 106.0 
7 A+B+C+D 80.4 81.9 77.0 80.3 82.1 
Multiple Networks 59.1 42.5 13.5 80.3 74.4

point predictor model, or if the classifier predicts the C-class, the switching law will 
select network 7. The overall prediction results across the testing dataset could be 
obtained by combining the results of all selected networks. As shown in the last row 
in Table 3, the RMSE value of the multiple networks is 59.1 m, considerably reduced 
by 26% compared to the single network 7. 

In the case where the classifier accuracy is not perfect, misclassification can deteri-
orate the overall predictive performance. For example, suppose the classifier misclas-
sifies the actual B-class as the A-class, the switching law will select network 1 instead 
of the expected network 2, which leads to a worse prediction. Additionally, the accu-
racy of the launch point prediction can also be affected by the performance of the 
filter. Poor filtering will output a poorly estimated trajectory which deviates more 
from the actual trajectory and consequently gets worse in launch point prediction. 
The effect of the filter and the classifier on the results of launch point prediction 
were omitted here. However, it is said that all three parts of the proposed method -
the filter, classifier, and launch point predictor - are critical to the accuracy of launch 
point prediction. 

Figure 4 compares the launch point prediction of network 7 with the individual 
networks (1, 2, 3, 4). It can be seen that all the individual networks, except for network 
3, make more accurate predictions for the launch points compared to the predictions 
from network 7. Notably, network 2 stands out from all other networks in terms 
of the dispersion of predicted launch points. Network 2 predicts most of the launch 
points close to the actual launch points, while the other networks predict more launch 
points located along the path between the true launch points.
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Fig. 4 Comparison of launch point predictions between network 7 and the individual networks 
(1, 2, 3, 4). The prediction by network 7 is represented as blue dots. The predictions by networks 
1, 2, 3, and  4 are represented as red dots. The coordinates (x, y) of nine actual launch points are 
(25,000,0), (25,100,100), (25,200,400), (25,200,-200), (25,300,200), (25,300,-100), (25,400,-300), 
(25,500,300), and (25,600,100) 

4 Conclusion 

In this paper, the method for improving the accuracy of launch point prediction 
for projectile targets using multiple LSTM networks was presented. The method 
consisted of three parts. The first part involved using the LSTM-based filtering model 
to filter the noisy radar data and estimate the flight trajectory. The second part involved 
using the LSTM-based classifier model to identify the class of munitions based on 
its flight trajectory. Finally, multiple LSTM networks were developed as the launch 
point predictor model. The switching law was established based on the classification 
result, which enabled the selection of the most suitable launch point predictor network 
for each class of munitions. The results showed a considerable improvement in the



Projectile Launch Point Prediction via Multiple LSTM Networks 119

accuracy of launch point prediction when using multiple LSTM networks compared 
to a single LSTM network. Furthermore, the predictive performance was found to 
be inherently correlated to the distribution of the data. 
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