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Abstract 

The theodolite intersection method is a traditional approach in the field of geodetic survey for 
coordinate measurements. The approach can also be employed as a non-contact technique for industrial 
dimensional and orientation measurements. In this work, the utilization of double theodolite intersection 
technique for precise orientation determination was investigated. The technique was mathematically 
modelled in order to account for errors caused by realistic imperfections of the instruments. The model was 
developed based on geometric interpretation of covariance-matrix and was simplified by separating the 
horizontal and vertical computations in order to predict the standard deviations of orientation determinations. 
The performance of the developed model was evaluated using linearization and Monte Carlo simulation 
techniques. The evaluation results showed good predictions of standard deviation in the horizontal 
orientation (azimuth); however, the standard deviation predictions in vertical orientation (elevation) cases 
were not good due to the separation in horizontal and vertical computations. 
Keywords: Theodolite Intersection Method; Double Theodolite Technique; measurement error model.  
 

1 Introduction 

Theodolite is a classical measuring instrument 
used in geodetic survey and construction fields. It is 
mainly used to measure both vertical and 
horizontal angles relative to a reference. Electronic-
transit theodolites with automatic leveling 
correction capability are commonly used for precise 
measurement in the modern days. 

The two theodolite intersection method or 
double theodolite technique is a traditional 
approach in the field of geodetic survey to the 
coordinate measurement. The method relies on the 
triangulation technique to determine three-
dimensional coordinate of a geodetic point. The 
approach is also employed as a non-contact 
technique for industrial dimensional and orientation 
measurement [1, 2]. In these modern days, the 
concept of theodolite intersection is utilized in the 

applications of computer stereo vision for detecting 
point in three-dimensional space, autonomous 
mobile robots, and precise inspections [3–6]. 

The current work focuses on the application of 
precise inspection of orientation in which 
information on both precision and accuracy of 
measurements are crucial. For the use of double 
theodolite intersection method for the inspection 
of object orientation, the precision and accuracy of 
measurements are depended on the performance 
of the instruments and the measurement setup. 
The objectives of this work are primarily to be able 
to predict the performance of orientation 
determination based on equipment with known 
specifications and to be able to determine of 
equipment specifications that achieve desired 
measuring criteria.  

This paper presents the details of applied 
mathematics and statistics deployment for a real-
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world engineering problem as an example for 
engineering education purposes. The developed, 
mathematical model of orientation inspections 
using double theodolite intersection which 
accounts for imperfection measurement of method 
is detailed and evaluated. The following sections 
include the details of problem statement and 
mathematical modelling. Finally, the results are 
discussed and conclusions are presented. 

2 Problem Statement 

The aim of orientation inspection is to precisely 
determine the azimuth angle, 𝜓 , and elevation 
angle, 𝜃, of a rigid body. In the inspection set-up, 
two markers are set on the object body to create 
reference line for the object orientation. Two 
theodolites are set to collimate each other and 
then are used to aim at the markers. Four 
horizontal angles and four vertical angles are 
obtained from the process. [7] 

 

 
Fig. 1 two theodolite intersection method for object 

orientation determination 
The definition of the orientation parameters is 

illustrated in Fig. 2. Here, the attitude of rigid body 
object is defined by a vector from point Q to point 
P. The definition in Fig. 2 can also be used to define 
the vertical and horizontal angles measured from a 
theodolite located at point Q looking at point P.  

 
Fig. 2 Orientation definition 

Fig. 3 presents the implementation of 
theodolite intersection technique to determine 
orientation of an object defined by the vector from 
point Q to point P. In the figure, two theodolites 
located at points A and B are used to measure 
vertical and horizontal angles of the object’s 
reference points (i.e. points P and Q). In Horizontal 
plane, the four measurements of horizontal angles 
can be used to determine the azimuth angle of the 
vector using triangulation technique. After azimuth 
angle is defined, the elevation angle of the vector is 
calculated from vertical measurements. 
 

 
Fig. 3 Implementation of theodolite intersection 

technique 
Consider the theodolites and object reference 

points in the Cartesian coordinate in which its x- 
and y-axes are on horizontal plane, a point is 
defined by 

 𝐱 = [𝑥, 𝑦, 𝑧]𝑇 (1) 

For simplification, one theodolite (point A) is 
set at the origin of local coordinate and another 
theodolite (point B) is set at a point along x-axis. 
The measurements of point P are 
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 [𝜓𝐴𝑃 , 𝜃𝐴𝑃 , 𝜓𝐵𝑃 , 𝜃𝐵𝑃] (2) 

and the measurements of point Q are 

 [𝜓𝐴𝑄 , 𝜃𝐴𝑄 , 𝜓𝐵𝑄 , 𝜃𝐵𝑄]. (3) 

The position of point P can be determined by 

 𝐱𝑃 =
𝐿 sin(𝜓𝐵𝑃)

sin(𝜓𝐵𝑃−𝜓𝐴𝑃 )
[

cos 𝜓𝐴𝑃

sin 𝜓𝐴𝑃

tan 𝜃𝐴𝑃

] (4) 

where 𝐿 is the length between points A and B. The 
position of point Q, 𝐱𝑄, can also be determined in 
the same manner. 

The azimuth and elevation angles of the vector 
from point Q to point P can be calculated by 

 𝜓𝑄𝑃 = arctan
𝑦𝑃−𝑦𝑄

𝑥𝑃−𝑥𝑄
 (5) 

and  

 𝜃𝑄𝑃 = arctan
𝑧𝑃−𝑧𝑄

‖𝑥𝑃−𝑥𝑄,𝑦𝑃−𝑦𝑄‖
 (6) 

As it is well known that all measurements 
come with errors, the measurement of parameters 
in Eqs. 2–3 are incorporated with errors. These 
measurement errors can be represented using 
statistical representation in the term of accuracy 
(bias) and precision (standard deviation). Assuming 
that probability distribution of measurement error is 
normal, the measurement value are: 

 𝜃 = 𝑁(�̅�, 𝜎𝜃) , 𝜓 = 𝑁(�̅�, 𝜎𝜓) (7) 

where �̅�, �̅� are the mean of measurement values, 
     𝜎𝜃 , 𝜎𝜓 are the standard deviation of 

measurement values. 
The problem here is to find a model that 

receives the set-up and instrument parameters as 
input and return the uncertainty of determination 
of azimuth and elevation as outputs. The set-up 
parameters include the position of object relative 
to the two theodolites. The instrument parameters 
are standard deviations in measurement values 
from the instruments. Here, the error in the set-up 
(levelling) of theodolite is not considered as 
modern theodolite mostly equipped with levelling 
sensors that minimize the error. 
 

3 Methodology 

To obtain the uncertainty (standard deviation) 
of orientation determination using Eqs. 4–6, one 
may easily deploy Monte Carlo simulations which 
requires long computation time or linearization 
techniques which is not very accurate. To obtain 
the standard deviation of orientation determination 
fast and accurate, the mathematical model of Eqs. 
4–6 is analyzed using applied statistics. The 
measurements in Eqs. 2–3 are computed from the 
measurement setup (Fig. 3) and instrument 
parameters. The outputs are azimuth and elevation 
of object and the standard deviation of each value. 
Here, it is considered that the probability 
distributions of measurement errors from 
theodolites are normal and are uncorrelated in 
vertical and horizontal measurements.  

3.1 Geometric-covariance-matrix Estimation  
In the orientation determination using the 

theodolite intersection technique, the uncertainties 
in angle measurements from theodolites in the 
Polar coordinate system are transformed into the 
uncertainty in position in the Cartesian coordinate 
system. Then a reference vector for the object 
orientation is created using the two points. In this 
step the uncertainties in position of the two points 
are combined and finally transformed back to be 
uncertainties in orientation (angles) in the Polar 
coordinate system. 

 Since the vertical and horizontal 
measurements are uncorrelated, one-standard 
deviation (1-SD or one-SD) uncertainties of angle 
measurements from each theodolite would create 
a point with 1-SD position uncertainty in the shape 
of Hexahedron. Combining with the position 
uncertainty of the other point, the 1-SD uncertainty 
of the vector becomes asymmetric egg shape in 
three-dimension which is very hard to be 
determined to is very hard to transform back to 1-
SD uncertainties of orientation angles (azimuth and 
elevation) in the Polar coordinate system. 
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The Geometric-covariance-matrix Estimation is 
developed by using covariance matrices to 
represent uncertainties in the Cartesian coordinate 
system for operation ease.  Each covariance matrix 
is always symmetry and contains the variances on 
its diagonal and the covariance off-diagonal. For 
simplification, the computations of horizontal 
angles and vertical angles are performed separately. 
The computation of vertical orientation (elevation) 
is performed after the computation of horizontal 
orientation (azimuth) is finished. Fig. 4 presents the 
concept of 1-SD uncertainty area of joint probability 
distribution from random variables in x- and y-axes 
(red dotted line) and the perimeter created from 1-
SD range of each variable (solid green line). In the 
figure, the 1-SD uncertainty area of joint probability 
distribution can be represented by a 2x2 covariance 
matrix. So the idea of Geometric-covariance-matrix 
Estimation is to find a circle or an ellipse that fit 
(and consume maximum space) inside the 
perimeter created from 1-SD uncertainties of two 
random variables. 

 
Fig. 4 one-SD perimeter and geometry of 

corresponding covariance matrix 
 

The perimeter created from 1-SD uncertainties 
of horizontal angle measurements of each 
theodolite (1-SD perimeter) at point P (and Q) is 
normally in the shapes of quadrangles. So the 1-SD 
uncertainty area of joint probability distribution is 
estimated using an ellipse as shown in Fig. 5. 
  

 
Fig. 5 Position uncertainty from angle 
measurements in horizontal plane 

The ellipse is determined based on four 
vertices (blue circular marks in Fig. 5) created from 
the 1-SD perimeter of angle measurements. The 
ellipse representing uncertainty in the point 
position is assumed to be the ellipse with largest 
area inside the 1-SD perimeter of measurements 
from two theodolites and can be defined by [8]. 

A covariance matrix associated the general 
form of uncertainty ellipse can be defined from the 
major and semi-minor axes as 

 Σl = [
𝜎𝑎

2 0

0 𝜎𝑏
2] (8) 

and the matrix can be rotated to the reference  
Cartesian coordinate system as 

 Σpoint = 𝑅Σl𝑅
𝑇 (9) 

where R is a rotation matrix. 
After points P and Q and their associated 

uncertainties are obtained, the vector QP is 
determined by subtraction of points P and Q. With 
this operation, the uncertainty of vector QP 
(direction and range) is in the form of the 
uncertainty in point P position when point Q is fixed 
at the origin. The uncertainty in vector QP is 
computed by combining the covariance matrices of 
the two points assuming there is no cross-
correlation as  

 ΣQP,ij = ΣP,ij + ΣQ,ij. (10) 

The covariance matrix ΣQP  is then projected 
onto the line that is perpendicular to the vector QP 
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in order to transform uncertainty in vector QP 
direction into the uncertainty in azimuth angle in 
the Polar coordinate system. Note that the 
uncertainty in range of vector QP is neglected. Fig. 6 
illustrates the described transformation of 
uncertainty. 

 

 
Fig. 6 Transformation of uncertainty in horizontal 

component of vector QP into uncertainty in 
azimuth angle  

For uncertainty in elevation angles, the 1-SD 
uncertainty of vertical measurement of the 
reference theodolite (at the origin point) is 
transformed into 1-SD uncertainty of vertical 
position of point P (and Q). The vertical component 
of vector QP can be computed in the same manner 
as the horizontal component. The variance of 
vertical component of vector QP can also be 
obtained from Eq. 10. Finally the standard deviation 
of elevation orientation can be computed as shown 
in Fig. 7. 

 
Fig. 7 Transformation of uncertainty in vertical 
component of vector QP into uncertainty in 

elevation angle  

 

3.2 Monte Carlo Simulations 
A Monte Carlo simulation is well-known 

method used to show the probability of different 
outcomes from a system when includes the 
intervention of uncertainty. In this paper, the Monte 
Carlo simulation method is used to present the 
distribution of azimuth and elevation angle outputs 
from inputs that incorporate normal distribution 
errors. The standard deviation of output distribution 
is computed and used as a reference (a correct 
value) to evaluate the prediction from developed 
model. 

4 Results and Discussion 

In the investigation of the performance of 
developed model, the set-up and instrument 
parameters are specified and used to compute the 
measurement value with random error. The first 
theodolite is located at the origin point and the 
second one is located on x-axis. All of the position 
values are normalized by the distance between 
two theodolites. Fig. 8−9  present the comparison 
between the result from the developed model and 
that from Monte Carlo simulations when the point 
is at different distance. For Monte Carlo simulations, 
1000 measurements for the same point from both 
theodolites are randomly generated based on Eq. 7 
and used to determine 1000 samples of points 
(blue markers). The distribution of samples is used 
to define the uncertainty ellipse for samples (red-
dashed line). An uncertainty ellipse of a considered 
sample obtained from the developed model is 
presented in the figures (green line). In Fig 8, the 
standard deviation of both theodolite 
measurements is 0.1 degree. In Fig 9, the standard 
deviation of 1st and 2nd theodolite measurements 
is 0.1 and 0.2 degree, respectively. Fig. 10−12 
present the result in which the actual points P and 
Q are at [0.5, 1.5, 0.7] and [0.9, 1.2, 0.5]. 
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(a) point at 1.5L 

 
(b) point at 0.5L 

 
(c) point at 0.1L 

Fig. 8 uncertainty ellipse for point determination 
 

 
(a) point at 1.5L 

 
(b) point at 0.5L 

 
(c) point at 0.1L 

Fig. 9 uncertainty ellipse for point determination  
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Fig. 10 uncertainty ellipse of vector QP computed 

from a sample and that computed from 1000 
samples 

 

 
Fig. 11 distribution of predicted azimuth error and 
distribution of azimuth error from 1000 samples 

 

 
Fig. 12 distribution of predicted elevation error and 
distribution of elevation error from 1000 samples 

 

Fig. 10 presents the uncertainty ellipse of 
vector QP computed from one pair of points P and 
Q (green line) and that computed from 1000 pairs 
of P and Q samples (red dashed line). Fig. 11 
presents the distribution of predicted azimuth error 
(red solid line) and distribution of azimuth error 
from 1000 pairs of P&Q samples (histogram). Fig. 12 
presents the distribution of predicted elevation 
error (red solid line) and distribution of elevation 
error from 1000 pairs of P&Q samples (histogram). In 
Fig 10−12, the standard deviation of both 
theodolite measurements is 0.1 degree for both 
azimuth and elevation measurements. 

From Fig. 8−9, it is observed that, in the point 
determination, the ellipses with largest area inside 
the quadrangle of 1-SD perimeters of two 
theodolite measurements closely match the 
uncertainty ellipses calculated from Monte Carlo 
simulations. From Fig. 10, it is observed that, in the 
vector determination, the ellipses defined by the 
combined covariance matrices closely match the 
uncertainty ellipses calculated from Monte Carlo 
simulations. From Fig. 11, the developed model 
show a good prediction for azimuth error 
distribution that agrees with the distribution from 
1000 samples of P&Q pairs for a test case. From Fig. 
12, the developed model show a poor prediction 
for elevation error distribution when it is compared 
with the distribution from 1000 samples of P&Q 
pairs for a test case. 

Fig. 13−14 present the analysis of azimuth 
determination using theodolite intersection method 
for the cases in which the object with different 
angles or different sizes at different distances (from 
the middle point between two theodolite). The 
results show that the uncertainty in azimuth 
prediction is smaller when the object is closer to 
the theodolite set-up. Note that the standard 
deviation of both theodolite measurements is 
0.0014 degree (5 second of arc) for the results in Fig. 
13−14. 
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Fig. 13 prediction of azimuth uncertainty for object 

with different angles 

 
Fig. 14 prediction of azimuth uncertainty for object 

with different sizes 

5 Conclusion 

This paper presents the details of development 
of mathematical model which relies on geometric 
interpretation of covariance-matrix and 
simplification which separate horizontal and vertical 
component computations. The results show good 
prediction performance of the model for azimuth 
error distribution but show poor prediction 
performance for elevation error distribution. It is 
expected that the poor prediction performance in 
elevation determination comes from the 
simplification (separation) of horizontal and vertical 
computations. The ellipses with largest area inside 
the quadrangle of 1-SD measurements closely 
agree with those calculated from Monte Carlo 
simulations. Future work will focus on a method 
that combines uncertainty in horizontal and vertical 

determination and represents using an oval 
(ellipsoid) that fit inside 1-SD Hexahedron in three-
dimension. 
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